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In this report, we will expand the material covered in class, keeping the same notation, to global
class field theory. This is needed in order to formulate at least the global version of the conjectures
of Langlands. Our emphasis is on characteristic zero fields. Although this report strives for a general
treatment but we nevertheless keep on shifting between number fields (finite field extensions of Q)),
global fields (which is includes a number field, a function field) or their completions (i.e., a local
field) where appropriate, utilizing special properties where afforded for each scenario, to validate a
general phenomenon under discussion.

The same symbols are used through-out to divulge the possibility of a unified treatment. To
avoid confusion, the assumptions are spelled out.

This report, like the paper in [4], motivates and sets down the stage for developments in theory
of local and global fields. Courtesy of the function field analogy, the general framework, therefore,
serves as a link between number theory and geometry. Our starting point is quadratic reciprocity,
after which we move on to L-functions and formulate the local Langlands Conjecture based on the
material covered.

Relevant local field theory, most of which is covered in class, is typed up in a separate appendix.

1 Introduction

Local Field Theory covered in class was all about classifying all finite abelian extensions of a given
local field K but a similar treatment can be given for global fields, as well. Remarks can be made
with function field analogy in this case, as well, to shed light on its algebraic nature. The ties with
geometry are also natural, given that both local fields and global fields admit a nice topology which
sits well with their respective algebraic structure. For example, in the case of number fields, the
binary operation of multiplication and addition are continuous under the usual metric: the lazy and
easy way to justify this is to consider the identity function on Q. This is, of course, continuous and
the sum and product of continuous functions is continuous. This addition and product of functions
corresponds, respectively, to the binary operation of addition and multiplication in Q. And now, we
extend linearly to the number field K.

This tie of algebra with topology is not restricted to Q. The general concept here is that of a
valuation. A non-Archimedean valuation on K is a function |�| : K ÝÑ R¥0 such that (a)
|ab| � |a| |b|, (b) |a| � 0 if and only if a � 0, and (c) |a� b| ¤ max t|a| , |b|u. If (c) is replaced
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by |a� b| ¤ |a| � |b|, then the valuation is an Archimedean valuation. These give rise to either
a metric or an ultra-metric and hence a topology on K. It is with respect to these metrics that
K is (Cauchy) completed. Two valuations |.|1 and |.|2 are called equivalent if Dλ ¥ 1 such that

|.|1 � |.|λ2 . This is an equivalence relation.

Proof. For λ � 1, |.|1 is related to itself. If |.|1 � |.|λ2 , then |.|
?
λ

1 � |.|2 and because λ ¥ 1, we must

have
?
λ ¥ 1 and so, we have symmetry. To show transitivity, let |.|1 � |.|λ1

2 and |.|2 � |.|λ2

3 . Then,

λ1, λ2 ¥ 1 implies λ � λ1λ2 ¥ 1 and so, |.|1 � |.|λ1

2 �
�
|.|λ2

3

	λ1 � |.|λ2λ1

3 � |.|λ3 .

Each such class is called a place. Of course no Archimedean valuation is equivalent to a non-
Archimedean valuation.

So, for example, we have seen (in class) valuations for each prime p on the field K � Qp and the
field K given by a finite extension of Qp. The p-adic valuation on Q is defined similarly. No two
valuations on Q are equivalent to one another, for if there were two such norms, then we would have
the blatant contradiction p�m � p�nλ for distinct primes, unless m � n and λ � 1. There can be
more valuations on such fields. Borrowing from [3], for each c P p0, 1q, we can define the valuation
on K as follows: for a P K, |a|c � c�m (and forcing |0|c � 0) where m � ordp paq is given by the
unique factorization. Thus, in case K � Q, we have the usual p-adic norm on Q. If K is a finite
degree extension of Qp, the exponent m is given by the exponent in the factorization a � uπm. If
K � Qp, then the exponent is given by the factorization a � upm.

To show that (b) is satisfied, observe that |ab|c � |u1πm1u2π
m2 |c � |uπm1�m2 |c � c�pm1�m2q �

c�m1c�m2 � |a|c |b|c where u � u1u2 P O�
K . To show that (c) is satisfied, we break the problem down

into cases m1 » m2 given by the Trichotomy law. If m1 � m2, then |a� b|c � |pu1 � u2qπm| �
cm � max tcm, cmu. If m1   m2, then let m1 � k � m2 and so

|a� b|c � ��u1πm1 � u2π
m1�k��

c

� ��πm1
�
u1 � u2π

k
���
c
� |πm1 |c

���u1 � u2π
k
���
c

� cm1
���u1 � u2π

k
���
c
  cm1�k � max

 
cm1 , cm1�k(

For any c, d P p0, 1q, the valuations |.|c and |.|d are patently equivalent.
If K � Qp or a finite extension thereof, the completion for it is itself. Number fields K ad-

mit a non-trivial completion, depending on the valuation chosen. The only way one can levy the
Archimedean norm to K is by successfully embedding it in either R or C. If there are r1 ways to
embed K in R and r2 ways to embed K into C, then there are r1 � r2 ways to come up with an
Archimedean norm on K. This makes sense once we understand the following:

Proposition 1 Let K{Q be a finite extension with n � rK : Qs. Then, the number of places v of
K which restrict to u does not exceed n.

An easy proof of this fact may be found in the student summer paper found in [5]. In fact,
Proposition 1 pins down all valuations we know on a local or global field K:

Theorem 2 (Ostrowski) Every nontrivial absolute value on K is either p-adic for a given prime
p or an Archimedean absolute value associated to a real or complex-conjugate pair of embeddings.

Local fields are locally compact under topology generated by their metric. Global fields, on the
other hand, are not locally compact. The easiest example of such an object is K{Q, which may
happen to be a finite, abelian extension. That is, GalpK{Qq is an abelian group. That makes K
Galois, a number field and hence a global field since K is incomplete (the completion of Q is the
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infinite field extension R). This shortcoming is one reason why there are two different versions (viz.
local and global) of the Langlands conjectures.

Regardless of this shortcoming, the goal of class field theory to classify all abelian extensions can
be masterfully accomplished via Artin’s quadratic reciprocity law in a unified manner. To get to
that point, and ultimately to the Langlands Conjectures, our journey has to start with Fermat.

2 Quadratic Reciprocity

As hinted above, one of the driving factors for the Langlands Program is the idea of quadratic
reciprocity. Among others statements, a modern formulation of the quadratic reciprocity is that for
distinct odd primes p and q, �

p

q


�
q

p



� p�1q p�1

2
q�1
2

where for 0 �� a, n P Z, we say that
�
a
n

� � 1 if there exists x such that x2 � a pmod nq, and
�
a
n

� � �1
otherwise. This statement was hypothesised by Leonhard Euler (1707 – 1783) and augmented by
Adrien-Marie Legendre (1752 – 1833) with the introduction of the Legendre symbol

�
.
.

�
, and proved

by Carl Gauss (1777 – 1855). Such an x is called a quadratic residue of n. Numerous instances of
Quadratic Reciprocity Formula were known before Euler. For example, an equivalent statement is
that for an odd prime p, the congruence x2 � �1 pmod pq is solvable if and only if p � 1 pmod 4q.
This version is today known as Fermat’s Theorem. Note that Pierre de Fermat (1607 – 1665)
proposed the following equivalent statement: p can be written as a sum of squares if and only if
p � 1 pmod 4q.

Such problems of number theory admit an easy translation in terms of Modern Algebra. We
go through a particularly enlightening enterprise covered in Section V.6 of [1] by setting up the
machinery of a valuation norm N : Z ris ÝÑ Z¥0 defined for Gaussian integers Z ris via N pa� ibq �
pa� ibq pa� ibq � a2� b2. This turns Z ris into a Euclidean Domain and thus a unique factorization
domain (UFD), allowing us the luxury of primes in Z ris. Call (usual) prime p split in Z ris if it is
not a prime in Z ris. That is, if the ideal pZ ris � ppq in Z ris is not prime. Recall that an element p
in a ring R is called prime if the principal ideal ppq generated by p is a prime ideal of R, where ideal
ppq is called prime if R{ ppq is an integral domain (equivalently, if ab P ppq implies a P ppq or b P ppq).

Proposition 3 A prime p P Z is splits Z ris if and only if p is the sum of two squares

Proof. p ùñ q If p � a2 � b2 for some a, b P Z, then p � N pa� ibq �� 1. Moreover, p is not a unit
since the only units in Z ris are �1 and �i. This is because if u is a unit, then for some v P Z ris
with uv � vu � 1, we must have N puvq � N p1q � N puqN pvq � 1 so N puq is a unit in Z. That is,
N puq � 1. The only such u are �1 and �i. Neither of the factors p � a2 � b2 � pa� ibq pa� ibq
are, therefore, units. Thus, for p P ppq, both a� ib and a� ib P ppq and so, ppq is not prime.

p ðù q Assume ppq is not a prime ideal of Z ris. Since Z ris is a UFD, we may then assume that p
is not an irreducible element of Z ris. Thus, we are allowed to assume that existence of an irreducible
factor q � a� ib of p with ppq �� pqq so let p � qc. This tells us that p2 � N ppq � N pqqN pcq. This
is an equation of natural numbers and, therefore, by primality of p, either N pcq � p or N pcq � 1.
The latter cannot happen since N pcq � 1 tells us that c is a unit and so pqq � ppq. Thus, N pcq �
p � N pqq � a2 � b2.

Proposition 4 A (usual) prime p P Z splits in Z ris if and only if
�
�1
p

	
� 1
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Proof. p P Z is not a prime in Z ris ðñ Z ris { ppq is not an integral domain. Observe that

Z ris { ppq � ZrXs{pX2�1q
ppq � ZrXs

pp,X2�1q � ZrXs
pp,X2�1q � ZrXs{ppq

pX2�1q � Z{pZrXs
pX2�1q . Thus, p P Z is not a prime in

Z ris ðñ Z{pZrXs
pX2�1q is not an integral domain ðñ X2 � 1 has a root in Z{pZ ðñ

�
�1
p

	
� 1

In fact, the above is also equivalent to p � 1 pmod 4q (cf. Theorem V.6.11 of [1]. That is,
Fermat’s Theorem.

2.1 Modern Developments

To move forward with a further generalization of the above trend, David Hilbert focused on finite
algebraic extensions of Q. The treatment of this subject, as covered in [4], is for both local and
global fields K.

Hilbert’s emphasis laid on writing out quadratic reciprocity law in terms of ideals themselves.
To this end, we must at least require ideals to be written as product of prime ideals with positive
and negative exponents, corresponding to the intuition in fundamental theorem of arithmetic or
fundamental theorem of finite abelian groups. Let us talk about how ideals can be broken down into
their constituents. Material for this is taken from [2] where more information may be found.

To begin with, there is a notion of divisibility of ideals in a ring: let I1, I2 be ideals. We say that
I1 | I2 if there exists another ideal I3 such that I2 � I1I3, where the product of ideals is defined in
the usual manner via ideal generated by finite sums of elements of the form i1i3. This also allows us
to define positive powers of an ideal. To be able to talk about “irreducible ideals”, we would need
to define a “unit ideal”. Let us weaken the requirement for now and make use of already existing
definition of a prime ideal.

Recall that an equivalent way to define a prime element p P R is by requiring p | ab ùñ p | a
or p | b, where, for r1, r2 P R, we say that r1 | r2 holds if there exists c P R such that r1 � r2c. One
way to reconcile this divisibility notion with the notion of a prime ideal is by observing that I1 | I2
implies I2 � I1. In fact, we have the following:

Proposition 5 p is a prime ideal of a commutative ring R if and only if for all ideals I, J ,
p �IJ ùñ p �I or p �J

Proof. p ùñ q Let p �IJ . Because of symmetry of the situation, without loss of generality, we can
assume that p �I. Then, we are allowed to pick x P Izp. For every y P J , xy P IJ � p but since p
is prime, either x P p or y P p. The former is not true by assumption and hence y P p. Since y was
arbitrary, we have that p �J .

p ðù q Let p be a fixed ideal such that for all ideals I, J , p �IJ ùñ p �I or p �J . In particular,
consider the principle ideals I � pxq and J � pyq for arbitrary x, y P R. If xy P p, then p �pxq pyq �
IJ and so p �I � pxq or p �J � pyq. That is, either x P p or y P p.

Thus, if for a prime ideal p, p � p1...pn, we have, by Proposition 5, p � pi for some i. Thus,
prime ideals can be viewed analogues of prime elements. However, the story doesn’t end here, since
we need to talk about negative exponents of prime ideals:

Definition 6 Let R be a commutative integral domain and K be its field of fractions. The frac-
tional ideal U of R is an R-submodule U of K such that dU �R for some d P Rz t0u.

Observe that dU �R is an ideal of R and that the exclusion of 0 ensures we do not have U � t0u.
Note that the equivalent condition U �d�1R essentially creates an ideal of the form

�
d�1

�
. This d

is called the common denominator.
If K is either a local or global field with valuation |�|K , the field of fractions of OK is K itself.
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Proof. Let K 1 be the field of fractions of OK . By its universal property, we have the map K 1 ÝÑ K,
an injection because K 1 is a field and the ideal ker pK 1 ÝÑ Kq is trivial

K 1 K

OK

So we have a copy of K 1 inside K. To show the other side of the inclusion K 1 � K, let x P K.
If |x|K ¤ 1, then x P OK and hence x P K 1 by construction of K 1. If |x|K ¡ 1 then

��x�1
��
K
  1 and

so x�1 P OK and hence x�1 P K 1. But since K 1 is a field,
�
x�1

��1 � x P K
Thus, the fractional ideal U of OK is an OK-submodule of K such that dU �OK for some

d P OKz t0u *. For every such U, there exists another fractional ideal V such that UV �OK and this
is the inverse of U.
Proof. Let V �tx P K : xU �OKu. We first show that V is a fractional ideal by first showing that
V is a OK-submodule of K. V is non-empty since 0 P V (since 0 P OK and 0U�OK) and d P V. For
any scalar α P OK and x P V, we have αxU � x pαUq�xU �OK , where the first inclusion follows
since U is an OK-module and the second follows by definition of V. Thus, αx P V and we have for
ourselves an OK-submodule.

Now, let x P Uz t0u. Then xU �OK and so x P V. Since V is an OK-submodule, xV �OK .
Thus, V is a fractional ideal.

For last part, we will show a stronger result. Assume that for some ideal I, we have UI � OK .
We will show that I � V. Let x P I. Then, xU �IU � UI � OK and so x P V. That is, I � V.

Instead of reaching out for the other inclusion, let us observe that x P V justifies the inclusion
xU �OK by definition of V. Since x was arbitrary, therefore VU � VU �OK . Now observe that
I � V ùñ IU � UV ùñ OK � UV ùñ OK � UV � VU.

Hence I � IOK � IUV � OKV � V.
We are now able to at least state that any fractional ideal of an arbitrary ring R can be factored

uniquely into products of exponents of prime ideals, from which it follows that every principal ideal
pxq of OK can be factored as prime ideals with positive and negative exponents. We skip a proof
for the general case since, for now, we are only concerned with local and global number fields and
we know how these behave.

In the context of local fields, since OK is a principal ideal domain, every prime ideal is max-
imal. Since p is maximal, we must have p � pi. In the context of local number fields, recall
that every ideal in OK is principal. In fact, for a finite K{Qp, every ideal of OK is of the form

pπmq. Then the inverse of pπmq can be constructed as follows: pπmq�1 � tx P K : x pπmq � OKu �
tx P K : x P pπ�mqOKu � pπ�mqOK � pπ�mq. Moreover, since p �pπq � OK , we have p1q �
OK � pπq�1 � �

π�1
�
. Thus, every ideal of OK can be written out as an exponent of a prime ideal.

In particular, the valuation of an element can be defined in terms of the exponent m as a power of a
prime. For example, let a P K. Then, a � uπm for some u P OK , π � p1{e and |a|K � p�m{e, where
e is the ramification index of K over Q.

If pxq is any principal ideal of a ring OK and if pxq � pm1
1 ...pmn

n where pi is prime, then we
can define |x|pi

� pNpq�mi where Np � |OK{pi|which is an instance of a much more general ideal

norm. This is a p-adic valuation.For K{Qp, this is easy to see since we have Np � pf where f
is the inertia degree and for any x P OK , we have pxq � pπqm � pm � tx P K : |x|K   1um. The
general notation for the exponent is also ordpi

pxq. In case we have a finite extension K{Q, we

*There is a typo in Gelbart’s paper. The author assumes that the common denominator d is in the field of fractions.
See page 26 of [4], first paragraph
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know that OK � Z and that pxq � pm1
1 ...pmn

n by the fundamental theorem of arithmetic, giving us
|x|v � |x|pi

� p�mi
i where pi � ppiq.

Let Kv denote the metric completion of K with respect to metric given by |x� y|v � |x� y|pi
�

di px, yq. Note that this is required for the case K{Q. Hilbert’s generalised quadratic reciprocity

goes as follows: if a, b P Ki, then
�
a,b
pi

	
� 1 if ax2 � by2 � 1 admits a solution x, y P Ki and �1

otherwise. It can be shown that
n¹
i�1

�
a, b

pi



� 1

Moreover, it can be shown that for K � Q, the above reduces to�
p

q


�
q

p



�

�p, q
2

	
� p�1q p�1

2
q�1
2

2.2 Artin’s Quadratic Reciprocity

Let us now move to Artin’s treatment of the subject in 1927. A particular set up was discussed in
class in the beginning lectures but we will delve into a little generality, beginning with norms on
field extensions.

Let K{F be any finite field extension and let α P K. We can define a norm NK{F on K as
N pαq � detλα where λα : K ÝÑ K is an F -linear homomorphism given by λα pxq � αx. This
map is clearly multiplicative since λαλβ � λαβ and because the determinant is multiplicative. This
can be further generalized in terms of ideles class groups, denote by CK , which are defined using a
particular quotient of ideles of course, which in turn are defined using ring of adeles, which in turn
are defined using formal Archimedean completions of a number field K and an inverse limit. We
discuss each component separately.

The profinite completion pG of a group G is defined via an inverse limit involving normal
subgroups N of G such that rG : N s   8. We can order subgroups by inclusion N1 � N2 � ... and

this gives rise to natural homomorphisms G{Ni ÝÑ G{Nj if Ni � Nj . Then, pG � limÐÝiG{Ni. For

G � Z, each normal subgroup Nn � nZ is of finite index. The natural homomorphism Z{nZ �
Z{mZ exists when m | n making the following diagram commute

Z

Z{nZ Z{mZ

Proof. The commutativity of the diagram will be clear once we prove that the function rxsn ÞÝÑ
rxsm is well-defined. Since m | n, we are guaranteed the existence of an element k P Z such that
n � km and so, if x � ymodn ðñ x � y � nk1 for some j P Z implies x � y � pkmq k1 � k2m
where k2 � kk1 ðñ x � ymodm. .

The integral adeles AO, for a global field K, is defined as the product of profinite completion pOK

of its ring of integers OK with a product of all Archimedean completions Kv for each place v. This
product may be restricted. More formally, let P be the set of places of K and S � P be subset of
Archimedean places and

AO :� pOK �
¹
vPS

Kv
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where Kv � C or R by Ostrowski’s Theorem. The ring of adeles AK is defined as

AK :� K bOK
AO

and so actually embeds K into a Cartesian product of its Archimedean completions. The idele IK
of K is defined as the units of AK . That is, IK � A�

K .
Thus, for K � Q, OK � Z and since there is only one Archimedean completion of Q viz. R,

the integral adeles AZ � R�pZ and AQ � QbZ AZ whereas IQ � A�
Q . The quotient IK{K� � CK is

called the idele class group of K[6].
Now, for a finite extension Kw{Fv, where Kw (resp. Fv) is the completion of K with place w

(resp., completion of F with place v) and norm NKw{Fv
: Kw ÝÑ Fv given by NKw{Fv

pαq � detλα,
we define the idele norm NK{F : IK ÝÑ IF by

NK{F pαq �
¹
w|v
NKw{Fv

pαq

which induces a quotient norm pNK{F : CL ÝÑ CF . For places w and v, the notation w|v means
that |x|v � |x|w for all x P F . This ties back to Proposition 3 and is the generalization of the norm
map in §2 of Appendix B (cf. p. 29 of [4]).

Artin proved� that for every abelian extension K{F , there is a surjective homomorphism CF ÝÑ
Gal pK{F q with kernel pNK{F pCLq. How this ties up with quadratic reciprocity is the subject of
the next section but for now, we mention, without proof, that the existence of this homomorphism
proves Kronecker-Weber Theorem. That is, it shows that every finite, abelian extension of Q is
contained in Q pςnq for some n-th primite root of unity ςn.

3 Enter L-functions

How does this tie up with quadratic reciprocity? The answer lies in particular functions called L-
functions, associated with idele class characters CK for a field K of characteristic 0. Observe the
analogies with just the preceding topic as we go through its details.

Like Fermat’s Theorem and Euler’s proposal, these functions have their roots in proposals by
the giants viz. Euler again with his proof of

8̧

n�1

1{n2 � π2{6,

Bernhard Riemann (1826 – 1866) with his zeta function

ζ psq �
8̧

n�1

1

ns
�

¹
p

1

1� 1
ps

and by Dirichlet (1805 – 1859) with his series

L ps, χq �
¹
p

1

1� χppq
ps

�Detailed proof may be found in Lecture 25 of [7].
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with both defined for Re psq ¡ 1 and χ : Z ÝÑ C is function that (a) has periodicity k (that
is, χ paq � χ pbq if a � b pmod kq (b) χ pnq � 0 for n not coprime to k and 1 otherwise, and (c)
is completely multiplicative for all integers. Riemann was interested in studying prime-counting
function and, similarly, Dirichlet was interested in proving that there were infinitely many primes in
any arithmetic sequence an � a� nd for coprime a and d. Hecke’s L-functions subsumed all cases:

L ps, χq �
8̧

n�1

χ pnq
ns

but let us step aside analytic considerations and focus on field theoretic ones. In order to be able to
define L-functions for a number field, we need a few definitions first.

Definition 7 Let K be a field of characteristic 0. A character of K with respect of v is a homomor-
phism χv : K�

v ÝÑ C�. A character is unitary is a homomorphism χv : K�
v ÝÑ S1, unramified

if O�
Kv

� t1u and ramified otherwise. A Hecke character is a homomorphism χ : CK ÝÑ C�

given by the product of a family of characters χv

χ pxq �
¹
v

χv pxvq

where the places v of K vary over all but finite unramified characters subject to χ pxq � 1 for x P K�

So, for example, if Kv � R, barring the trivial homomorphism, one unitary character is given by
χv : R� ÝÑ S1 given by χv pxq � x

|x|v . We can define a similar character if Kv � K is any finite

degree extension of Qp. Then O�
Kv

� OKzp so there might not be unramified characters of K with
respect to v. Observe the similarity with unramified extensions K over Qp, which is reflected in the
choice of the terminology. If Kv � C, then O�

Kv
� S1 so, again, no character is unramified but there

are uncountably many (continuous) characters χv
�
reiθ

� � rceciθ for each c P p0, 1q and unitary ones

χv
�
reiθ

� � eciθ.
For now, we record the following, to be used later once we invoke ideles: let x P K�

v . Then, we
can write x � |x|v x

|x|v to place x
|x|v P O�

Kv
and so K�

v � O�
Kv
� |K�|v. In the unramified case, this

takes a special place.
Recall that we stated, without proof, that for any finite extension K, for any principal ideal pxq

of OK we have pxq � pm1
1 ...pmn

n where pi’s are prime and m1 P Z. For Npi � |OK{pi|, we define
the uniformizing parameter by Np�1

i . In this case, χ ppiq :� χv pwvq where wv P Kv such that
|wv|v � Np�1

i . Since any ideal of OK can be written out as a product of prime ideals with integer
exponents, we can then extend by linearity the above definition.

Thus, for an unramified local field with a degree extension of n and, therefore, of inertia degree
n � f over Qp, this is Np�1

i � π, the generator for the unique maximal ideal p (because e � 1).
We are now ready to define L-functions! Let pi be a prime ideal of OK . For a given character

χ, Hecke’s L-function is defined as

L ps, χq �
¹
i

1

1� χppiq
pNpiqs

where the product is over all prime ideals. Thus, for a local field in the unramified case would give
us L ps, χq � 1

1�χppq .
Artin’s definition of L-functions generalise Hecke’s L-functions. From there, we would need to

talk about how a representation is the generalization of a character but this would require the
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understanding of how general linear groups are related to ideles. For K�
v , it is easy to see that

GL1 pKvq � K�
v for an Archimedean place v. Artin’s reciprocity stems from the existence of a

special representation πσ (called automorphic cuspidal reprsentation) based off of the representation
σ : Gal pK{F q ÝÑ GL1 pCq � C�. This is a special case for n � 1 of the following:

Conjecture 8 (Langlands) Let K{F be finite Galois and σ : Gal pK{F q ÝÑ GLn pCq be an
irreducible representation of Gal pK{F q. Then, there exists an automorphic cuspidal representation
πσ on GLn over F such that L ps, πσq � L ps, σq.
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Appendix A

The following proof was given by Euler himself for

8̧

n�1

1{n2 � π2{6

It is included in the report because it was the first thing that sparked my curiosity when I was
learning series expansions of functions.

Since sinx � x� x3{3!� x5{5!� x7{7!� ... we have

sinx

x
� 1� x2

3!
� x4

5!
� x6

7!
� ...

Now, since roots of this polynomial occur at �nπ for n P N, Euler claimed that this allows us to
factor this polynomial as follows:
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sinx

x
�

�
1� x

π

	�
1� x

π

	�
1� x

2π

	�
1� x

2π

	
...

�
�

1� x2

π2


�
1� x2

p2πq2
��

1� x2

p3πq2
�
...

Now, we expand these out and compare coefficients with the series expansion of sin. The coefficient
for x0 is only 1. The coefficient for x2 is

� 1

π2

�
1

12
� 1

22
� 1

33
� ...




Comparing this with �1{3!, we have
8°
n�1

1{n2 � π2{3!.
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